
ECE444: Software Engineering
Software Engineering Research

Shurui Zhou



(Competing) concerns in SE…

• Code: faster, cheaper, more features, more 

reliable/secure

• Developers: more productive, more skilled, happier, 

better connected

• Organizations/communities: attract/retain contributors, 

encourage a participatory culture, increase value





Contributing graphs considered harmful (Hanselman)
https://www.hanselman.com/



Software Engineering Design Space



Research success?





Success practice transfer stories from research

• Automated testing (Facebook)

• Code review tools (Microsoft)

• Software Analytics (Hassan et al.)



DeepCode from ETH



kite from MIT&Stanford
https://www.kite.com/



11

1968 NATO Conference on Software Engineering

• international experts on computer
software who agreed on defining 
best practices for software 
grounded in the application of 
engineering.



“Academic software engineering research has been a backwater primarily staffed by 
those interested in theory, with a tenuous connection to practical software 
development.”

• Lack of industrial relevance (doesn’t 
scale or solve industry

problems) [Briand]
• Poor replication of software 

engineering studies [Menzies et al.]
• Poor actionability (practitioners know 

which modules are buggy…)
• Perils of mining software repositories 

[Kaliamvakou, German et al.]
• Lack of focus on human/social aspects 

[Storey et al.]



13





15



Mining Software Repository







Requirement











Documentation





Traceability





Code Review







Deployment





Productivity





• To increase awareness and adoption of software 
tools and practices, Google uses a technique 
called “Testing on the Toilet”, or TotT for short
• Evaluation of the effectiveness of TotT
• Hypothesis: Testing on the Toilet increases usage 

of advertised developer tools.
• Case Study: CausalImpact, a Bayesian statistical 

technique that was developed to evaluate the 
impact of advertising on website traffic





Clone Detection



Code Clone Categorization

• Type-1 clones – Identical code fragments but may have some 
variations in whitespace, layout, and comments 
• Type-2 clones – Syntactically equivalent fragments with some 
variations in identifiers, literals, types, whitespace, layout and 
comments
• Type-3 clones – Syntactically similar code with inserted, deleted, or 
updated statements 
• Type-4 clones – Semantically equivalent, but syntactically different 
code



Key points of Code Clone

• Pros 
– Increase performance 

• Code inlining vs. function call
– Increase program readability 

• Cons
– Increase maintenance cost 

• If one code fragment contains a bug and gets fixed, all its clone 
peers should be always fixed in similar ways.

– Increase code size



Detecting Strategies

• Text matching 
• Token sequence matching
• Graph matching



Collaboration






